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EXECUTIVE SUMMARY 

 This report details a demonstration of the applicability of sensitivity and uncertainty 

analysis techniques for the Natural System Regional Simulation Model (NSRSM).  Uncertainty 

analysis is the probabilistic quantification of uncertainty in predicted outcomes, in this case 

hydrologic outcomes from the NSRSM.  Analysis of uncertainty allows an increased confidence 

in the reliability of physical and economic estimates that are based on these outcomes. 

 The report begins with a description of the NSRSM, and includes the selection of key 

inputs and outputs for the study.  The Regional Simulation Model (RSM), developed by the 

South Florida Water Management District, is a numerical model capable of simulating surface 

water and groundwater interactions in shallow water table environments.  One specific 

application of the RSM is the Natural Systems Regional Simulation Model (NSRSM), which was 

designed to simulate the predevelopment hydrologic response.  The model was constructed using 

a predevelopment land use condition and predevelopment topography. 

 Selection of uncertain input and output metrics is described next.  NSRSM parameters for 

the current study were chosen from two land cover types, 511—Ridge and Slough Marsh as well 

as 712 – Mesic Pine Flatwood.  The conveyance parameters were Manning’s coefficient (n) and 

detention storage.  The ET parameters were vegetation coefficient and extinction depth.  The 

hydrologic parameter was storativity in the groundwater system.  Finally, topography was varied 

among three separate cases: “low”, “base”, and “high” maps.  A total of 11 input parameters 

were thus considered as uncertain. The output metrics were based on water stage and transect 

flow.  For water stage, a location was chosen in each land cover type, with cell 25492 in the 

Ridge and Slough Marsh and 25087 in the Mesic Pine Flatwood.  At these locations, the stage 

was averaged for a one-week time window within the representative year.  Also, the average 

daily flow for the Tamiami transect (Ridge and Slough Marsh) and the T712_East transect 

(Mesic Pine Flatwood) for a one-week time window were selected as outputs.  These selections 

resulted in four total output metrics. 

 Singular Value Decomposition (SVD)-based sensitivity analysis is discussed in the next 

report section.  SVD-based sensitivity analysis provides more insight than a classical “one-off” 
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sensitivity analysis because it reveals parameter interdependencies.  SVD involves the 

factorization of the sensitivity matrix to create matrices which define linearly independent groups 

of parameters and outputs.  A vector of singular values is also created by the decomposition.  

These singular values indicate the relative importance of each parameter group.  The inclusion 

and importance of parameters in the linearly independent groups provide insight into both 

parameter interactions and synergies, as well as the local sensitivity of output metrics to the 

parameters.  The findings regarding particular sensitivities are useful in providing context to the 

global sensitivity analysis subsequent to the uncertainty propagation described below. 

 The next section of the report describes the characterization of parameter uncertainty.  

Distributions are chosen for those parameters that are considered uncertain in the analysis.  The 

11 input variables were each prescribed a distribution based on standard approaches for 

distribution selection, including a review of available literature, model calibration data from 

analogous regions, known constraints, and expert judgment. 

 In the next section of the report, uncertainty propagation techniques and results are 

discussed, along with a description of the software used to help automate the analysis.  mCalc, 

the software used in the analysis, facilitates the evaluation of uncertainty or confidence in model 

predictions. It is a generic uncertainty analysis tool which ‘wraps’ around process models,  

enabling the user to develop input parameter samples from the input parameter distributions, feed 

the sampled parameter fields into the process model and compile and display CDFs of output 

variables (i.e., performance measure) of interest.  mCalc implements the two uncertainty 

propagation techniques used in the current work,  Monte-Carlo simulation (MCS) and First-

Order Second-Moment (FOSM) analysis. 

 Monte-Carlo simulation, the most commonly employed technique for implementing the 

probabilistic framework in engineering and scientific analyses, is a numerical method for solving 

problems by random sampling.  Probabilistic modeling allows a full mapping of the uncertainty 

in model parameters (inputs) and future system states (scenarios), expressed as probability 

distributions, into the corresponding uncertainty in model predictions (output), which is also 

expressed in terms of a probability distribution.  Uncertainty in the model outcome is quantified 

via multiple model calculations using parameter values and future states drawn randomly from 
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prescribed probability distributions.  Cases of 100, 200, and 300 realizations were run with the 

NSRSM model, and the results of the 200 realization case were chosen for detailed analysis.  The 

CDFs for all of the output metrics were plotted, with most showing typical behavior.  One 

exception was the [Tamiami] metric, which showed a considerable positive skew. 

 The First-Order Second-Moment (FOSM) method is one of the methodologies for 

estimating uncertainty in model predictions in terms of mean and standard deviation only, rather 

than the full output distributions.  The advantage of this approach is that it typically requires only 

(number of parameters) + 1 model simulations, as opposed to several hundred simulations for 

typical MCS.  For this particular case, one-point derivatives were not sufficient, so considerably 

more model simulations were required for calculating multi-point derivatives.  The FOSM 

analysis was carried out for all of the variables, with the exception of topography, since 

categorical variables are not amenable to derivative calculations.  The FOSM results were 

compared to the MCS results.  The means and standard deviations were similar, with the 

exception of the [Tamiami] metric, where the standard deviation was somewhat different, likely 

due to the skewness in the output distribution.  

 The next report section describes the uncertainty importance analysis that was completed 

using the 200 realization MCS results.  The objective of uncertainty importance analysis is to 

quantify the contribution from individual input parameters to the uncertainty (the spread or 

variance) of model predictions and determine the corresponding importance ranking.  Two 

importance analysis techniques were used, stepwise rank regression and classification tree 

analysis.  In stepwise regression, a linear response surface is fit between the rank-transformed 

input and output variables and a sensitivity analysis is performed on this “surrogate” model.  In 

general, the order by which variables are added to the regression model corresponds to their 

order of importance.  The relative contribution to variance by individual parameters can be 

compared via the standardized regression coefficient.  The total goodness-of-fit for the 

regression model is characterized by the coefficient of determination (R2).  In general, the results 

of the regression analysis showed that one or two variables contributed predominantly to the 

variance in an output metric.  The vegetation coefficient, Manning’s n, and to a lesser extent, 

topography, were the most important contributors to variance. 
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 Classification tree analysis is typically used to provide insight into what variable or 

variables are most important in determining the extremes of output data.  A binary decision tree 

is at the heart of classification tree analysis.  The decision tree is generated by recursively finding 

the variable splits that best separate the output into groups where a single category dominates.  

The importance of the variables is demonstrated by their order of split, with the variables at the 

top of the classification tree (the first variables split) considered more important than the 

variables involved in later splits.  For this analysis, the upper and lower quartiles of the output 

data were the selected categories.  The results of the classification tree analysis were similar to 

those of the regression analysis, with only one or two variables typically dominating the 

separation of the categories. 

 Overall, this work demonstrates the utility of several sensitivity and uncertainty analysis 

techniques for application to the NSRSM model.  Uncertainty analysis provides a probabilistic 

description of the output metrics (i.e., range of possible outcomes and the likelihood of each 

outcome), given the current level of knowledge (or lack thereof) about the input parameters.  

This facilitates quantitative risk-based decision-making on the part of management.  Sensitivity 

analyses help identify key input parameters that have the largest impact on uncertainty for the 

chosen output metrics.  This allows resources to be focused on improving the understanding of 

the key processes and parameters.  The results of the various approaches for sensitivity analysis 

were quite consistent, lending confidence to the conclusions.  It is important to remember that 

while the techniques applied in this work are quite general, the specific quantitative results of the 

current study are valid only for the selected metrics and are also conditional on the assumptions 

about uncertainty characterization for model inputs.  For future work, a more comprehensive 

characterization of input uncertainty is desirable, along with the selection of output metrics that 

can be directly related management decisions. 

 



NSRSM Sensitivity and Uncertainty Analysis  
 
 

   
 v 

TABLE OF CONTENTS 

EXECUTIVE SUMMARY ............................................................................................................. I 

1.0 INTRODUCTION AND SCOPE...........................................................................................1 
1.1 Natural System Regional Simulation Model ................................................................1 
1.2 Need for Uncertainty Analysis .....................................................................................1 
1.3 Scope of Study..............................................................................................................4 

2.0 MODEL DESCRIPTION.......................................................................................................5 
2.1 Description of RSM and NSRSM.................................................................................5 
2.2 Selection of Key Inputs and Outputs ............................................................................7 

2.2.1 Land Cover Types............................................................................................7 
2.2.2 Evaluation of Input Parameters........................................................................7 
2.2.3 A Note on Topography ....................................................................................9 
2.2.4 Input Parameter Summary .............................................................................10 
2.2.5 Output Parameters..........................................................................................11 

3.0 SVD-BASED SENSITIVITY ANALYSIS .........................................................................13 
3.1 Background.................................................................................................................13 
3.2 Theoretical Considerations .........................................................................................13 
3.3 Results.........................................................................................................................15 

3.3.1 Sensitivity Matrix...........................................................................................15 
3.3.2 Singular Values..............................................................................................16 
3.3.3 Output Metric Groups ....................................................................................16 
3.3.4 Input Parameter Groups .................................................................................16 
3.3.5 Resolution Matrix ..........................................................................................17 
3.3.6 Correlation Matrix .........................................................................................17 

3.4 Discussion...................................................................................................................18 

4.0 CHARACTERIZATION OF PARAMETER UNCERTAINTY.........................................19 
4.1 Background.................................................................................................................19 
4.2 Conveyance – Manning’s n ........................................................................................19 
4.3 Conveyance – Detention Storage................................................................................20 
4.4 ET – Vegetation Crop Coefficient ..............................................................................21 
4.5 ET – Extinction Depth ................................................................................................21 
4.6 Storage Coefficient .....................................................................................................22 
4.7 Topography.................................................................................................................23 

5.0 UNCERTAINTY PROPAGATION ....................................................................................24 
5.1 mCalc Software Description.......................................................................................24 
5.2 Monte Carlo Simulation .............................................................................................26 

5.2.1 Background....................................................................................................26 
5.2.2 Monte Carlo Simulation Results....................................................................27 



NSRSM Sensitivity and Uncertainty Analysis  
 

TABLE OF CONTENTS (CONTINUED) 

   
 vi 

5.3 First-Order Second Moment Analysis ........................................................................30 
5.3.1 Background....................................................................................................30 
5.3.2 FOSM Results................................................................................................31 

6.0 UNCERTAINTY IMPORTANCE ANALYSIS..................................................................33 
6.1 Introduction.................................................................................................................33 
6.2 Stepwise Rank Regression Analysis...........................................................................34 

6.2.1 Background....................................................................................................34 
6.2.2 Stepwise Regression Results..........................................................................37 

6.3 Classification Tree Analysis .......................................................................................40 
6.3.1 Background....................................................................................................40 
6.3.2 Classification Tree Results ............................................................................42 

6.4 Discussion...................................................................................................................43 

7.0 SUMMARY AND CONCLUSIONS...................................................................................45 

8.0 REFERENCES.....................................................................................................................49 



NSRSM Sensitivity and Uncertainty Analysis  
 

   
 vii 

LIST OF TABLES 

Table 2-1 Summary of selected parameter sources and ranges. .........................................10 
Table 2-2 Preliminary list of uncertain input parameters....................................................11 
Table 2-3 List of output metrics and names........................................................................12 
Table 5-1 Comparison of MCS and FOSM results. ............................................................32 
Table 6-1 Stepwise-Regression Analysis Results for metric [25492stage]. .......................38 
Table 6-2 Stepwise-Regression Analysis Results for metric [25087stage]. .......................39 
Table 6-3 Stepwise-Regression Analysis Results for metric [Tamiami]. ...........................39 
Table 6-4 Stepwise-Regression Analysis Results for metric [T712_East]. ........................40 
 
 



NSRSM Sensitivity and Uncertainty Analysis  
 
 

   
 viii 

LIST OF FIGURES 

Figure 2-1 Structure of RSM. ...............................................................................................51 
Figure 2-2 Predevelopment land use based on historical data..............................................52 
Figure 2-3 Land cover types chosen for parameter variation and locations of 

output metrics. ....................................................................................................53 
Figure 2-4 Modeling of ET in the RSM. ..............................................................................54 
Figure 2-5 Difference between “high” topographic map and “base” topographic 

map......................................................................................................................55 
Figure 2-6 Difference between “low” topographic map and “base” topographic 

map......................................................................................................................56 
Figure 2-7 Water elevation hydrographs for locations 25087 and 25492 with 

averaging time window for sensitivity and uncertainty analysis. .......................57 
Figure 3-1 Bubble plot of the sensitivity matrix...................................................................59 
Figure 3-2 Singular values from the SVD decomposition. ..................................................60 
Figure 3-3 U matrix elements showing linear coefficients of the output groups. ................61 
Figure 3-4 Elements of the VT matrix showing linear coefficients of parameter 

groups..................................................................................................................62 
Figure 3-5 Resolution matrix from the SVD decomposition. ..............................................63 
Figure 3-6 Correlation matrix from the SVD decomposition...............................................64 
Figure 4-1 Cumulative distribution function (CDF) for Manning’s n..................................65 
Figure 4-2 Cumulative distribution function (CDF) for detention storage. .........................66 
Figure 4-3 Cumulative distribution function (CDF) for vegetation crop 

coefficient. ..........................................................................................................67 
Figure 4-4 Cumulative distribution function (CDF) for storage coefficient. .......................68 
Figure 4-5 Probability density function (PDF) for topography indicator variable...............69 
Figure 5-1 Stability analysis for the [25492stage] metric. ...................................................70 
Figure 5-2 Horsetail plot of stage at cell 25492. ..................................................................71 
Figure 5-3 Horsetail plot of stage at cell 25087. ..................................................................72 
Figure 5-4 Horsetail plot of daily transect flow for Tamiami. .............................................73 
Figure 5-5 Horsetail plot of daily transect flow for T712_East. ..........................................74 
Figure 5-6 CDF for the [25492stage] metric, for the 200 realization case...........................75 
Figure 5-7 CDF for the [25087stage] metric, for the 200 realization case...........................76 
Figure 5-8 CDF for the [Tamiami] metric, for the 200 realization case. .............................77 
Figure 5-9 CDF for the [T712_East] metric, for the 200 realization case............................78 
Figure 5-10 CDFs for the [Tamiami] metric, and two alternate metrics, for the 

200 realization case.  Figure 5-4 shows the time slices for the three 
metrics.................................................................................................................79 

Figure 6-1 Input-output scatterplots for important variables with respect to 
[25492stage]. ......................................................................................................80 

Figure 6-2 Input-output scatterplots for important variables with respect to 
[25087stage]. ......................................................................................................81 



NSRSM Sensitivity and Uncertainty Analysis  
 

LIST OF FIGURES (CONTINUED) 

   
 ix 

Figure 6-3 Input-output scatterplots for important variables with respect to 
[Tamiami]. ..........................................................................................................82 

Figure 6-4 Input-output scatterplots for important variables with respect to 
[T712_East]. .......................................................................................................83 

Figure 6-5 Classification tree for metric [25492stage].........................................................84 
Figure 6-6  Partition plot for metric [25492stage]................................................................85 
Figure 6-7 Classification tree for metric [25087stage].........................................................86 
Figure 6-8 Classification tree for metric [Tamiami]. ...........................................................87 
Figure 6-9 Partition plot for metric [Tamiami] ....................................................................88 
Figure 6-10 Classification tree for metric [T712_East]..........................................................89 
Figure 6-11 Partition plot for metric [T712_East]..................................................................90 
 
 



NSRSM Sensitivity and Uncertainty Analysis  
 

   
 1 

1.0 INTRODUCTION AND SCOPE 

1.1 Natural System Regional Simulation Model 

 The Regional Simulation Model (RSM), developed by the South Florida Water 

Management District (the DISTRICT), is a numerical model capable of simulating surface water 

and groundwater interactions in shallow water table environments.  The RSM was developed 

with a comprehensive hydraulic component capable of simulating the numerous and different 

types of man-made structures and canals in south Florida. The hydraulic component must be 

capable of responding to preset rules and operations as well as to extreme weather patterns 

(wet/dry) that affect competing urban, environmental and agricultural demands. The RSM is 

developed on a sound conceptual and mathematical framework, simulating a wide range of 

hydrologic conditions.  The RSM has been developed principally for application in South 

Florida, and accounts for interactions among surface water and groundwater hydrology, structure 

and canal hydraulics, and management of these hydraulic components.  

 The RSM simulates and integrates the coupled movement and distribution of 

groundwater, surface water, man-made structures and network canals in south Florida.  One 

specific application of the RSM is the Natural Systems Regional Simulation Model (NSRSM), 

which was designed to simulate the predevelopment hydrologic response.  The model was 

constructed using a predevelopment land use conditions and predevelopment topography.  All 

present day canals and structures were not represented in the NSRSM. 

 The NSRSM is intended to be a management tool to guide the restoration of the natural 

environment to predevelopment conditions.  NSRSM applications are expected to produce an 

estimate of what the hydrologic state of the groundwater and surface water bodies would have 

been in the absence of man-made structures and network canals.  

1.2 Need for Uncertainty Analysis 

 Uncertainty often refers to the error between model predictions and field observations. 

The fact that there is always doubt about the observed data as well as the model output accuracy 
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reduces confidence relative to the outcome of a particular hydrologic process. The quantification 

of the probabilistic characteristics of such errors is often called uncertainty analysis.  There is a 

lot of natural variability and uncertainty in any model input, model parameters, model structure, 

and model output that contribute to the overall model uncertainty.  In general there are three 

broad uncertainty categories. 

1) Uncertainty due to our inability to fully understand the natural variability of input process 

to the model at a scale smaller than the gauging scale.  Examples of these uncertainties 

are: 

a. Spatial variability such as rainfall, potential evapotranspiration (PET), and 

topography 

b. Temporal variability such as inflow and tidal boundary conditions 

2) Uncertainty due to measurement errors and/or data modeling.  This covers: 

a. All field measurements and published data, which are used to set up the model 

(e.g., input data and parameters)  

b. All field measurements used to calibrate the model (e.g., output). 

c. Data estimation using pre-processing and modeling tools 

3) Uncertainty due to conceptual and implementation errors.  This includes:  

a. Error in specifying boundary conditions such as inflow and tidal boundaries and 

initial conditions such as stage 

b. Model structural and numerical errors 

c. Model parameter errors due to parameter modeling errors and/or calibration 

imperfection 

d. Model inability to resolve variability smaller than the designated time step and 

mesh cell size  

e. Model linkage to other tools such as HPM that process stresses (e.g. crop local 

demand and runoff applied to the model) 

Of interest is to identify, isolate, and quantify those sources of uncertainties with significant and 

unique contribution to the overall uncertainty associated with model output. 



NSRSM Sensitivity and Uncertainty Analysis  
 

   
 3 

 The uncertainty assessment of NSRSM is mainly aimed at the computation of the 

probability density function of key model output and performance measures which can help the 

water manager infer the following: 

1. In its simple format, a mean and a standard deviation of a given output, performance 

measure or index.  This simplified uncertainty metric is rarely sufficient for a complete 

characterization of uncertainty.  

2. Model output in terms of a range rather than a single value. This describes the system 

performance as a range of potential outputs, classes of likely events, or probability 

density function. 

3. Provides a level of confidence that a certain output is within an acceptable performance 

indicators. 

4. Provides probability that a certain output exceeds a specific target value. 

 Previously, the DISTRICT has carried out a limited uncertainty and sensitivity analysis 

for the NSM, i.e., the predecessor of NSRSM.  In this analysis, a sensitivity matrix was 

constructed to summarize the model response at each observation point to each individual 

performance parameter.  A matrix factorization technique (Single Value Decomposition) was 

applied to the sensitivity matrix to isolate parameter groups with distinct parameter 

contributions.   Model output uncertainty was then computed as a function of model parameter 

uncertainty using first-order error analysis.   

 The DISTRICT has had several workshops on uncertainty and sensitivity analysis.  A 

recent peer review of the DISTRICT current modeling tool (i.e., SFWMM) has provided the 

following specific recommendations to be adapted for future improvement in this area for both 

the SFWMM and the NSM.  The recommendations call for: 

1) State clear and realistic objectives of sensitivity and uncertainty Analysis for SFWMM 

and NSM. 

2) Conduct global sensitivity analysis to identify the parameters and variables with 

significant contribution to model output. 

3) Incorporate uncertainty measures for both model parameters and model performance 

indices during model initial calibration. 
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4) Use uncertainty measures that are effective, quantitative, mathematically consistent and 

acceptable. 

5) Produce a document that clearly provides answers to the uncertainty associated with 

model output, stability of model parameter estimates, the impact of parameter 

uncertainty on model output, and the relative contribution of different parameters to 

the overall model uncertainty. 

1.3 Scope of Study 

 The objective of the current project is to demonstrate the application of uncertainty and 

sensitivity analysis techniques to NSRSM by computing the uncertainty associated with model 

output(s) as a function of prescribed uncertainty in selected model inputs and model parameters.  

The emphasis will be on a few key model inputs and parameters to which the NSRSM 

performance measures of interest are most sensitive to.  To this end, a systematic framework for 

sensitivity and uncertainty analysis will be employed which comprises of the following steps: 

• Selection of a limited set of key inputs and outputs based on previous modeling studies 

and expert opinion. 

• Application of formal local sensitivity analysis (via Singular Value Decomposition of 

the input-output sensitivity matrix) to identify important uncertain inputs.  

• Assignment of probability distributions to characterize uncertainty in selected model 

inputs and their correlation structure (based on the best available data). 

• Application of uncertainty propagation techniques to determine the uncertainty in model 

output(s) as a function of the uncertainty in model inputs. 

• Application of global sensitivity (uncertainty importance) analysis techniques to identify 

those model inputs that are key contributors to the overall uncertainty in model output(s).  

This results in an importance ranking that is dependent on both input uncertainty and 

input-output sensitivity, whereas the importance ranking based on SVD factorization is 

only dependent on input-output sensitivity.  
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2.0 MODEL DESCRIPTION 

2.1 Description of RSM and NSRSM  

 The DISTRICT completed an initial numerical model implementation for South Florida.  

The numerical code currently being implemented has been under development for approximately 

ten years. This model code is titled the Regional Simulation Model (RSM) and is currently 

composed of two principal components that include the Hydrologic Simulation Engine (HSE) 

and the Management Simulation Engine (MSE).  The HSE and MSE are coupled within the 

RSM C++ object-oriented code and do not exist as separate models (Figure 2-1).  User input 

dictates if MSE components are used in conjunction with an HSE simulation.  At this time, the 

RSM model is running only on the Red Hat Linux 9.0 platform, while pre- and post-processing 

codes run on both Linux and Windows platforms. 

 The RSM is a regional model that will be used to predict the hydrologic responses to 

planning and operational scenarios while considering competing water management priorities 

and issues. The HSE simulates the coupled movement and distribution of groundwater and 

surface water throughout the model domain. The MSE provides methods that can simulate 

operational decisions and/or alternative management decisions for the regional water distribution 

system.  This model represents the next generation of integrated water management modeling 

and provides the ability to simulate the complexity of the South Florida hydrologic system and is 

necessary to support decision-making processes well into the future. 

 The RSM regional implementation to pre-drainage system (i.e., the natural system) is 

called the Natural System Regional Simulation Model (NSRSM).  The NSRSM is a tool which 

mimics natural hydrologic conditions in south Florida.  The primary goal of the NSRSM is to 

simulate pre-drainage hydrology within the estimated range of performance documented in the 

best available information sources.  Its predecessor, the South Florida Water Management Model 

(aka the 2x2) based NSM, which was used extensively during the Central & Southern Florida 

Project Restudy (C&SFR), Comprehensive Everglades Restoration Plan (CERP), and several 

water supply planning efforts, to provide insight in evaluating alternatives for future restoration 

initiatives.  The NSRSM will have the advantage of improved data sets and refined parameter 
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input resulting in simulations more closely representing natural system hydrology prior to 

modern drainage activities.  Its performance will be evaluated for an extended period of record 

simulation that will represent system conditions starting mid 1800s to present time.    

 The NSRSM is a distributed model with spatial coverage that includes Lower Kissimmee 

Basin, Lake Okeechobee, Greater Everglades, Big Cypress, and Lower East Coast.  The NSRSM 

is the implementation of the HSE used for the new generation management model as applied to 

the natural system after updating all input data and model parameters.  The HSE is based on a 

weighted implicit finite volume approximation of the vertically averaged overland flow 

equations (i.e., Saint Venant equations). These equations consist of a continuity equation and 

momentum equations. For more information regarding the HSE methodologies the reader is 

referred to the RSM theory manual (http://www.sfwmd.gov/site/index.php?id=681) 

 Input data to the model include dynamic data such as historical rainfall, estimated 

evapotranspiration, and boundary conditions as well as static data such as topography, land 

cover, and aquifer thickness. Input parameters include groundwater parameters such as hydraulic 

conductivity, storage coefficient, seepage parameters, and surface water parameters such as 

Manning’s coefficient, and Hydrologic Process Module (HPM) parameters such as wetland 

system’s parameters, unsaturated soil parameters, and river network parameters.  

 The predevelopment land use was estimated from historical data collected from the 

General Land Office (GLO) surveys (land use data shown in Figure 2-2).  The topography for 

the NSRSM was estimated with modern topography data in most places except for regions where 

significant subsidence had occurred, the topography in these areas utilized the GLO surveys.  

 The NSRSM was conceptualized with a very refined mesh.  The model represents the 

predevelopment surface water hydrology and the surficial aquifer system.  The lower boundary 

to (and from) the deep aquifers is assumed no flow.  The model simulates the hydrologic (rain 

and ET) conditions from 1/1/1965 to 12/31/2000.  There is a network of rivers simulating only 

the natural stream channels. 

 NSRSM simulates water level (stage) as the primary variable and estimates flows at key 

locations.  Model Performance measures are hydroperiod, water depth, seasonal amplitude, flow 
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magnitude, and flow directions.  There are two main simulation scenarios.  A baseline condition 

run, which utilizes the SFRSM historical rainfall (i.e., 1965 through 2000), and an extended 

period of record run, which utilizes a longer period of records (i.e., 1895 through 2005) for the 

purpose of estimating extreme wet, dry, and average hydrologic conditions.  Performance 

measures are compared against reference ranges for performance evaluation from best available 

sources of historical observations and measured data.   

2.2 Selection of Key Inputs and Outputs 

2.2.1 Land Cover Types 

 In order to keep the analyses tractable, the sensitivity and uncertainty analyses will be 

restricted to two unique land cover conditions.  These two land cover types, 511--Ridge and 

Slough Marsh and 712--Mesic Pine Flatwood, rank 1 and 2 in terms of covered area in the 

NSRSM data set.  Figure 2-3 shows the location of these two land cover types.  Because these 

cover types comprise such a large area in the model, the variation of parameters within these 

areas should provide a relatively well-integrated impact on many of the potential output metrics. 

2.2.2 Evaluation of Input Parameters  

 Based on our evaluation of project documents supplied by the DISTRICT, we developed 

a preliminary list of input parameters to be treated as uncertain.  The input parameters were 

chosen from several water budget categories, e.g., conveyance, evapotranspiration (ET), and 

groundwater.  These major categories provide a good cross section of the hydrologic processes 

captured in the HSE simulation.   

a) Conveyance Parameters 

 Conveyance or overland flow is a significant surface water process in the overall water 

budget of a basin.  The amount of water that is conveyed in overland flow is controlled by 

several hydrologic parameters and follows Equation (2-1): 

 Sd
n
LQ 3

5

=  (2-1) 

where 
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 L = length of the flow face perpendicular to the flow direction, 

 n = Manning’s coefficient, 

 d = water depth, and 

 S = water surface slope. 

 Excess precipitation or the rainfall that exceeds the infiltration capacity of the soil is 

available to runoff the basin via overland flow.  The runoff processes are controlled by 

topography through the slope and the hydraulic length.  The parameters selected to be treated as 

uncertain are the Manning’s n and the detention storage. 

Conveyance: Manning’s n – Manning’s n is related to the friction in the overland flow process.  

The HSE defines Manning’s n using the following equation: 

 BAdn =   (2-2) 

where 

 d = water depth, and 

 A, B = empirical constants. 

 In the case of the NSRSM, A is defined for each land cover type while B remains zero for 

all land cover types.  In this case the depth variation of the n is ignored, so n is simply equal to A. 

Conveyance: Detention Storage – Detention storage is defined as the minimum depth of surface 

ponding required in order to produce overland flow.  The detention storage accounts for the 

micro-topography not represented by the topography defined by the scale of the cells.  The 

detention storage basically acts as a switch.  When the ponding is less than the detention storage 

then the overland flow is set to zero.  When the ponded water exceeds the detention storage 

overland flow occurs following the equation above.  The detention storage parameter was 

selected to be handled as uncertain. 

b) ET Parameters 

 Evapotranspiration is the largest water budget term in the hydrologic cycle.  Much of the 

water that enters the hydrologic cycle in the form of precipitation leaves in the form of 

evaporation.  The Hydrologic Process Module or HPM dataset contained within the NSRSM 

includes the “layer1nsm” and “unsat” modules.  The HPM contains the ET parameters associated 
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to the land use condition in each cell.  There are several parameters associated with the 

“layer1nsm” and “unsat” HPM’s.  A graphic of the layer1nsm is extracted and shown below in 

Figure 2-4.  Two parameters, ‘kveg’ and ‘xd’, were selected to be treated as uncertain.  These 

parameters, as described below, are used by both “layer1nsm” and “unsat” modules.   

ET: Vegetation Crop coefficient – The crop coefficient, kveg, represents a factor used to define 

the plants maximum capability to transpire water.  The kveg parameter was selected to be 

handled as uncertain.  The coefficient is not directly measurable and can only be determined 

through calibration. 

ET: Extinction depth  – The extinction depth, xd,  is defined as the water table depth at which ET 

ceases to remove water from the water table and vadose zone.  The ET crop correction factor 

linearly approaches zero starting from the root depth at which point the ET factor is defined as 

kveg.  In the HSE formulation the extinction depth accounts for the dwindling number of roots at 

depth by further reducing the ET factor and thus the ET rate for the cell.  Note that this parameter 

is a calibration parameter.  There is no direct measurement of the extinction depth. 

c) Hydrogeologic Parameters 

 The NSRSM uses a one layer model to represent the groundwater system.  This one layer 

has a tidal flow boundary on the east coast to represent the flow to tide and a no flow boundary 

on the bottom face.  The hydraulic conductivity of the surficial is represented in the “hyc-1a.dat”.  

The storage parameter in the NSRSM is defined using the land cover index and the sv converter 

module.  The “sv45.xml” is called from the main xml to perform this operation.  For most land 

cover conditions the storage is considered as a constant.  For the Ridge and Slough land use 

(index 511) the storage is defined with a look up table.  In this project we will consider the 

storage parameter as uncertain. 

2.2.3 A Note on Topography 

 The uncertainty in topography and how it affects the simulation results is a high priority 

for the DISTRICT.  Unfortunately the DISTRICT cannot at this time provide us with many 

realizations of topography that would be required to properly capture its uncertainty and 

determine the corresponding uncertainty ranges in the model output.  There is an on going 
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project that will be able to produce the many realizations but the timing of this project will not 

allow this project to use those realizations.  However the DISTRICT has agreed to supply 

INTERA with two extreme scenarios around the reference topography that permit bracketing the 

range of topographic uncertainty and its use in uncertainty propagation studies.   

 Figures 2-5 and 2-6 depict the difference between the low and the high topography 

delivered to INTERA.  These figures show that low topography ranges from no change to 0.27 

feet lower and the high topography ranges from no change to 0.56 feet higher that the original 

topography. Topography was not considered in the local sensitivity analysis, due to the difficulty 

in “perturbing” a topography based on a limited number of available scenarios.  In other words, a 

local tangent approximation cannot be applied as topography has not been parameterized in 

terms of a continuous and differentiable variable.  However, topography will be considered as 

part of the global sensitivity and uncertainty analyses using the three different topo maps 

supplied by the DISTRICT with each of the maps assigned a different probability (weight). 

2.2.4 Input Parameter Summary 

 Tabulated below in Table 2-1 is some basic information about the data file, source and 

range of values in the current NSRSM model associated with each of the parameters selected in 

the preceding paragraphs.  Note that the current model documentation reflects the deterministic 

nature of the NSRSM model, and as such emphasizes considerations of spatial variability rather 

than lack-of-knowledge uncertainty.  Further information about uncertainty ranges will be 

presented in Section 4 based on interactions with the DISTRICT staff, and/or evaluation of 

literature values.   

 Table 2-1 Summary of selected parameter sources and ranges. 

Selected Parameter Data File Data Ranges in NSRSM Data Source 
(author) 

Topography nsmtopo_v4.1.dat -2.9 - 168.8 Appendix_Topo.doc 
(Winifred Said) 

Conveyance – ‘a’ parameter conveyance45.xml .1 - .4 mostly .3  
Conveyance – detention storage conveyance45.xml .1  
ET – ‘kveg’ hpm45.xml -.1 – 1.0 1  
ET – Extinction Depth hpm45.xml 3 – 10  

Hydrogeology – ‘specific yield’ sv45.xml .2 – 1.0 mostly .2 Appendix_Hydro.doc 
(Emily Richardson) 

1Value -0.1 is used when kveg (ET) has seasonal variation 
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 The selected parameters from these processes and their nominal values are listed in Table 

2-2, along with the abbreviations by which they are referenced in the sensitivity analysis and 

uncertainty analysis results sections.   

 Table 2-2 Preliminary list of uncertain input parameters. 

Parameter Original Value Description Abbreviation 
Alpha-712 0.3 Conveyance – a parameter alpha712 
Alpha-511 0.325 Conveyance – a parameter alph511 
Detent-712 0.1 Conveyance – detention storage detent712 
Detent-511 0.1 Conveyance – detention storage detent511 
Xd-712 10 ET – extinction depth xd712 
Xd-511 3 ET – extinction depth xd51 
Kveg-712 0.74 ET – kveg kveg712 
Kveg-511 0.74 ET – kveg kveg511 
Storativity-712 0.2 Hydrogeology – specific yield sv712 
Storativity-511 0.8 Hydrogeology – specific yield sv511 
 

2.2.5 Output Parameters 

 In a typical uncertainty analysis, the selection of output metrics is often guided by the 

metrics that define the targets used in model calibration.  This consistency allows an analysis to 

yield insights about acceptable parameters ranges for key uncertain inputs.  To this end, we 

initially chose output metrics that were similar to the soft calibration targets developed by the 

NSRSM team (e.g., daily maximum and minimum stage during a representative year).  However, 

when we attempted to calculate numerical derivatives for the SVD analysis, we found that the 

chosen metrics did not respond smoothly to perturbation in the input parameters – possibly 

because of the non-continuous and non-differentiable nature of extreme values used as the 

metrics.  This also affected the computation of derivatives for uncertainty propagation using the 

first-order second moment method.  Because the metrics for the uncertainty analysis should be 

consistent with those used in the SVD analysis for a proper comparison, it was necessary to find 

alternative metrics that would respond more smoothly to perturbation.  The exploratory work that 

yielded the final metrics is described in a separate document.  The model outputs finally chosen 

as metrics for the uncertainty analysis are two cell stages, and two transect flows.  For both the 

stages and transect flows, the daily result was averaged over a selected week during the 

representative period.   
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 The stages at locations 25492 (land cover 511) and 25087 (land cover 712) were chosen 

as output variables of interest.  Figure 2-3 shows their locations.  Figure 2-7 shows the stage 

hydrographs at these locations for the representative water year ranging from May 92 to April 

93, and the time “windows” over which the stages were averaged to yield the output metrics.  

The water year was defined by the DISTRICT and is representative of an average or normal 

rainfall condition.   

 In addition to the stages, a transect was chosen from each of the land cover types.  For 

land cover 511, the flow from the Tamiami transect was selected.  For land cover 712, no 

transect was immediately available, so one was created and approved by the DISTRICT.  This 

transect will be called T712_East.  The location of both transects is shown in Figure 2-3.  Figure 

2-8 shows the streamflow hydrographs for these transects for the representative water year 

ranging from May 92 to April 93, and the time “windows” over which the stages were averaged 

to yield the output metrics. 

 With two stage output metrics and two transect flow metrics, we had a total of four 

output metrics.  Table 2-3, below, shows a summary of these outputs and the names by which 

they are referenced in the results section. 

  Table 2-3 List of output metrics and names. 

Metric Type Location Abbreviation 

Stage 25492, land cover 511 25492stage 

Stage 25087, land cover 712 25087stage 

Transect Flow land cover 511 Tamiami 

Transect Flow land cover 712 T712_East 
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3.0 SVD-BASED SENSITIVITY ANALYSIS 

3.1 Background 

 Classic local sensitivity analysis involves perturbing input parameters, typically one at a 

time, and observing the change in prescribed output metrics.  By comparing the relative change 

in the output metrics to each parameter perturbation, one can gain insight into the relative 

sensitivity of output metrics to the input parameters.  The disadvantage of this classical “one-off” 

sensitivity analysis approach is that it fails to take into consideration the effect of parameter 

interdependencies.  Model input parameters often exhibit strong correlation and/or synergistic 

effects on the model output, which should always be accounted for during interpretation of input-

output sensitivities. 

 Insight into parameter interdependence can be gleaned by further analysis of the input-

output sensitivity data.  One simple and effective method is singular value decomposition (SVD) 

of the sensitivity matrix.  SVD involves the factorization of a rectangular matrix (in this case, the 

sensitivity matrix).  It is a powerful technique that has been predominantly used in the field of 

hydrologic modeling for parameter reduction in the optimization process and also to improve 

convergence (e.g. Doherty, 2004).  The added benefit of describing parameter resolution and 

interdependence has also been emphasized in some cases (Lal, 1995; Trimble, 1995).  In the 

current work, we will apply the technique to enhance the sensitivity analysis of the NSRSM. 

3.2 Theoretical Considerations 

 We start with a sensitivity matrix, Am x n , where the elements are 

 
i

j
ij x

y
∂
∂

=α        i = 1,2,…,n           j = 1,2,…,m  (3-1) 

where 

 αij = the sensitivity of the jth simulated output metric to the ith parameter 

 yj = the jth simulated output 

 xi = the ith parameter 
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 m = number of observations 

 n = number of parameters 

 This sensitivity matrix is often referred to as the Jacobian.  The matrix A can be 

decomposed into three matrices V, S, and U such that 

 A = U S VT  (3-2) 

U and V are m x m and n x n matrices, respectively, and S is a diagonal matrix of singular values 

of A.  VT gives the coefficients of linear combinations of the original parameters that give rise to 

new, independent parameter groups.  U gives the coefficients of linear combinations of the 

observation groups.  The parameter groups and observation groups are related by the diagonal 

matrix S.  The relative magnitude of the singular values in S indicates the relative importance of 

each of the parameter groups. 

 Typically a cutoff level is established for the smallest singular value in S for controlling 

data errors.  For this study, we will use the rule of smin/smax < 0.001 (Trimble, 1995).  Values of s 

that are less than smin are set to zero, and the number of columns in the U and VT matrices are 

correspondingly reduced. 

 The resolution matrix, R, where 

 R = V VT  (3-3) 

gives insight regarding parameter resolution (or parameter independence).  Also, the correlation 

matrix can be determined from the SVD via the covariance matrix Y: 

 
jjii

ij
ij YY

Y 2

=ρ  (3-4) 

where ρij is element i,j of the correlation matrix.  

 The singular values, U and VT, the resolution matrix, and the correlation matrix are the 

primary sources of information used to construct groups of parameters, understand their 

interdependence, and analyze their sensitivity. 
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3.3 Results 

 The SVD sensitivity analysis was completed on the parameters described in the previous 

section.  Recall that there are 10 input parameters (since the pointer variable for topographic 

uncertainty is kept unchanged), and 4 output metrics.  Producing the sensitivity matrix requires 

calculating the derivatives expressed in Equation 3-1.  In a typical analysis, this requires running 

the forward model N+1 times, where N is the number of input parameters.  In each run, one of 

the parameters was perturbed 1% from its original value, and numerical derivatives are 

calculated.  However, as we indicated in Section 2.2.5, output metric responses to small 

perturbations in inputs were not consistently smooth or monotonic, which could result in 

considerable error in calculating a one-point numerical derivative.  Therefore, for this work we 

calculated multipoint derivatives, using 14 randomly-spaced points inside a span -5% to 5% from 

the base parameter value.  A linear regression was performed on the points inside the span, and 

the derivative was calculated as the slope of the regression line.  This approach is obviously less 

computationally efficient than N+1 for the single-point derivatives, but was necessary to ensure 

accuracy for this case.  Each element of the sensitivity matrix was divided by the standard 

deviation of the output metric (based on the set of daily values in the 1992-93 average year) to 

remove unit dependencies (Lal, 1995). 

3.3.1 Sensitivity Matrix 

 A visualization of the sensitivity matrix is shown in Figure 3-1.  The size of the bubble in 

the plot is proportional to the magnitude of the element in the sensitivity matrix.  The results are 

reasonably self-consistent; that is, the two metrics in land cover 511 are sensitive primarily to 

[alpha511] and [kveg511] and the two metrics in land cover 712 are sensitive primarily to 

[alpha712] and [kveg712].  So the Manning’s n and vegetation coefficients are the most 

influential parameters for this set of metrics.  The [25492] metric shows a similar relative 

response to the [Tamiami] metric, while the [T712_East] metric has a larger relative response 

than the [25087] metric.  However, keep in mind that this response is somewhat dependent on 

the choice of the “time window” over which the metric was averaged, and the standard deviation 

of the output over the representative year.  Because of the difficulty in normalizing metrics 

representing different physical processes and units (i.e. stage versus transect flow) at different 



NSRSM Sensitivity and Uncertainty Analysis  
 

   
 16 

times, the strength of the SVD technique lies not in identifying the metric that is most sensitive 

to a particular parameter, but rather in identifying the most influential parameters and their 

potential interactions with respect to a particular metric. 

3.3.2 Singular Values 

 Figure 3-2 shows the singular values resulting from the decomposition.  The figure 

indicates that the first parameter group is the most influential group, followed by significantly 

lower singular values for the remaining groups.  Using our defined cutoff of smin/smax < 0.001, we 

will keep all 4 singular values and will therefore be analyzing all 4 parameter groups.  

3.3.3 Output Metric Groups 

 Figure 3-3 shows the elements of the U matrix which provide the linear coefficients 

making up the output metric groups.  Coefficients of higher magnitude indicate more important 

metrics for a particular group.  The trend in Figure 3-3 is quite clear, and corresponds to the 

observations made from Figure 3-1.  Recall that the order of the groups corresponds to the order 

of the singular values; therefore, they are numbered and displayed in order of decreasing overall 

sensitivity.  The first group, O1, is dominated by the output metrics [T712_East], which had the 

largest relative response in Figure 3-2.  Groups O2 and Group O3 are dominated by [Tamiami] 

and [25492], respectively.  These metrics showed responses of similar magnitude in Figure 3-2.  

Finally, Group O4 is dominated by [25087] which displayed the smallest relative response in 

Figure 3-2.  These figures indicate that the output groups are all mostly defined by a single 

metric, so the matching input groups (discussed in the following section) will correspond 

predominantly to a single metric. 

3.3.4 Input Parameter Groups 

 Figure 3-4 shows the elements of the VT matrix which provide the coefficients for the 

linear combinations of parameters that make up the input parameter groups.  Coefficients of 

higher magnitude indicate more influential parameters for a particular group.  Note that these 

groups are ordered to correspond with the singular values and therefore with the output groups.  

The two most influential parameters in Group I1 are [alpha712] and [kveg712], with a smaller 

contribution by [detent712].  Recall that the corresponding Group O1 was dominated by metric 
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[T712_East], so this result is similar to the general trend shown in the sensitivity matrix in Figure 

3.1.  The dominant parameters in Groups I2 and I3 are [alpha511] and [kveg511] which are 

consistent with previous observations for metrics [Tamiami] and [25492stage] corresponding to 

Groups O2 and O3.  Finally, the dominant parameters in Group I4 are [alpha712] and [kveg712].  

This result is expected given that metric [25087] dominates Group O4. 

 These results from the elements of the VT matrix show that the Manning’s n and 

vegetation coefficients work in tandem in influencing the output metrics that reside in respective 

land cover types. 

3.3.5 Resolution Matrix 

 Figure 3-5 shows a visualization of the resolution matrix, which indicates how well 

resolved each of the parameters is with respect to the output metrics.  A well-resolved parameter 

is one that can be independently determined without significant influence from other parameters.  

If all of the parameters were independent, the matrix would be an identity matrix (i.e., unity 

along the diagonal).  We can see from Figure 3-5 that [alpha511] is the best resolved parameter, 

likely due to its significant importance in both Groups I2 and I3.  The other well-resolved 

parameters are also important in two groups, with [alpha712] and [kveg712] in Groups I1 and I4 

and [kveg511] in Groups I2 and I3.  If we look at a parameter that is poorly resolved, such as 

[xd511], we note that it barely registers in any of the parameter groups.  Remember that this 

result does not mean that the parameter is not influential (although the sensitivity matrix 

indicates it is of marginal influence), but rather that its importance is not independent of other 

parameters in the analysis. 

3.3.6 Correlation Matrix 

 Figure 3-6 shows the correlation matrix.  This matrix indicates which parameters have a 

similar direction of influence on the output metrics (not necessary a similar magnitude of 

influence).  In many cases, the correlation matrix will support the resolution matrix, with well-

resolved parameters showing the least correlation to other parameters.  This trend is evident here 

with the [alpha511] and [kveg511] parameters, which show only slight correlation to other 

parameters.  However, the other well-resolved parameters [alpha712] and [kveg712] do show 
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significant correlation to some of the other parameters.  As noted earlier, although the direction 

of influence may be similar between two parameters, the significant difference in magnitude of 

influence may result in one parameter being well-resolved and the other not. 

3.4 Discussion 

 One of the potential benefits of the SVD-based sensitivity analysis is to identify those 

parameters that exhibit the highest input-output sensitivity.  Such parameters can then be utilized 

during model calibration studies and make the parameter estimation process parsimonious and 

stable.  SVD-based parameter screening can also be used to restrict the number of parameters 

that are selected for probabilistic modeling studies.  The parameter screening aspect was not 

relevant in the present study because of the limited number of uncertain inputs considered.  It 

should be kept in mind, though, that the SVD-based sensitivity analyses reflect results that are 

representative of conditions at or near the reference state, and may not be accurate away from the 

reference point if the input-output relationship is nonlinear and/or non-monotonic. 

 In a later section, we will present results of uncertainty importance or global sensitivity 

analyses that provide a complementary suite of results compared to those from the SVD-based 

sensitivity analyses.  As noted earlier, the global sensitivity analyses produce importance 

rankings that are dependent on both input uncertainty and input-output sensitivity, whereas the 

importance rankings based on SVD factorization are only dependent on input-output sensitivity.  

The global sensitivity analysis results will be generated from the sampling-based uncertainty 

analyses, and will thus reflect input-output sensitivities over the entire range of parameter 

variations.  The other advantage of the global sensitivity analysis is the consideration of 

synergistic effects between parameters, whereas the sensitivities used in the SVD-based analysis 

are derived from one-parameter at a time perturbations.  
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4.0 CHARACTERIZATION OF PARAMETER UNCERTAINTY 

4.1 Background 

 This section describes the distributions assigned to the key uncertain inputs identified in 

Section 2.2.  Recall that the uncertainty analyses will be isolated to two unique land cover 

conditions (511, Ridge and Slough Marsh and 712, Mesic Pine Flatwoods).  There are five 

uncertain parameters corresponding to each land cover condition, viz., Manning’s n, detention 

storage, vegetation crop coefficient, extinction depth and storage coefficient.  In addition, there is 

one indicator variable representing topographic uncertainty. 

4.2 Conveyance – Manning’s n 

 The distribution selected to represent the Manning’s n for the Ridge and Slough Marsh 

and the Mesic Pine Flatwood is shown in the tables below.  The original model values for 

Manning’s n are shown in the parenthesis.  The unique land cover of the Ridge and Slough 

Marsh makes a thorough literature review difficult.  The “Predevelopment Vegetation 

Communities of Southern Florida” states that the Ridge and Slough community is an Everglades 

specific community.  Since this environment is only found in the Everglades widely accepted 

literature values are difficult to find.  All the data will be very specific to South Florida and work 

performed in South Florida.  In contrast the Pine flatwoods vegetation community is wider 

spread and therefore literature values from various authors are a little easier to obtain.  Also the 

range of possible conditions in this land use makes defining a single Manning’s value 

problematic.  Under very wet conditions lower ranges of friction factors are plausible due to the 

deep water depth.  Overland flow frictions factors are no longer valid to represent the wet 

conditions possible.  During dry conditions in the marsh a higher Manning’s n is plausible.   

 The possible range of values along with the corresponding cumulative probability level is 

shown in the distribution of uncertainty in the Manning’s n (shown in the table below).  A review 

of various literature ranges for the pine forest showed higher values are possible.  The range in 

Manning’s n is defined by the range found in the literature.  The literature showed an affinity 

towards a value of 0.4 for the Pine Flatwood, therefore, the distribution reflects this as a 
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predominate probable outcome.  Piece-wise linear CDFs based on these values are shown in 

Figure 4-1, and will be used as inputs for uncertainty analysis. 

Ridge and Slough Marsh 
(.325) 

Mesic Pine Flatwood  
(.3) 

Value CDF 
.06 0 
.3 .15 
.35 .95 
.4 1  

Value CDF 
.3 0 
.35 .10 
.45 .90 
.6 1  

 

4.3 Conveyance – Detention Storage 

 The detention storage is defined as the minimum depth of surface ponding required in 

order to produce overland flow.  The detention storage accounts for the micro-topography not 

represented by the topography defined by the scale of the cells, and basically acts as a switch.  

When the ponding is less than the detention storage then the overland flow is set to zero.  When 

the ponded water exceeds the detention storage overland flow occurs following the equation 

above.  The detention storage parameter was selected to be handled as uncertain. 

 The distribution of the detention storage for the Ridge and Slough Marsh and the Mesic 

Pine Flatwoods is shown in the following tables.  The distribution for the detention storage was 

defined as uniform over the range.  Due to the large variability in topography present in the ridge 

and slough marsh the detention storage was defined with a larger range.  The Mesic Pine 

Flatwood has more regular and smooth topography therefore a smaller range in the detention 

storage was used to define the uncertainty.  Figure 4-2 shows these piece-wise linear CDFs. 

Ridge and Slough Marsh 
(.1) 

Mesic Pine Flatwood 
(.1) 

Value CDF 
.1 0 
.6 1  

Value CDF 
.1 0 
.2 1  
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4.4 ET – Vegetation Crop Coefficient 

 The crop coefficient, or kveg as it is defined in the input data set, represents a factor used 

to define the plants maximum capability to transpire water.  Note that this parameter is not 

directly measurable and can only be determined through calibration. 

 The distributions of the uncertain inputs for the two selected land covers are shown in the 

tables below.  The ridge and slough vegetation is capable of transpiring more than the pine 

flatwood vegetation.  Values of similar vegetation coefficients for other models show the pine 

flatwoods can be quite lower than that of wetland marshes.  Figure 4-3 shows these piece-wise 

linear CDFs. 

Ridge and Slough Marsh 
(.88) 

Mesic Pine Flatwood 
(.84) 

Value CDF 
.7 0 
.8 .5 
.9 1.0  

Value CDF 
.4 0 
.6 .40 
.7 .90 
.8 1  

 

4.5 ET – Extinction Depth 

 The extinction depth is defined as the water table depth at which ET ceases to remove 

water from the water table and vadose zone.  The ET crop correction factor linearly approaches 

zero starting from the root depth at which point the ET factor is defined as kveg.  In the HSE 

formulation the extinction depth accounts for the dwindling number of roots at depth by further 

reducing the ET factor and thus the ET rate for the cell.  Again this parameter is a calibration 

parameter.  There is no direct measurement of the extinction depth. 

 The distributions for the extinction depth uncertainty are shown in the tables below.  The 

predominant vegetation in the ridge slough marshes do not allow for an extensive root system 

while the pine flatwoods can have extensive roots.  The original values for the extinction depth 

are 3.0 and 10.0 for the marsh and pine flatwoods respectively.  These numbers are reasonable 

given other hydrologic modeling studies.  Even though the numbers are reasonable there are 

uncertainties associated with their selection.  For example the ridge and slough vegetation could 
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easily have roots as deep as 4 feet or may be only as deep as 2 feet.  But we do know the roots of 

the ridge and slough vegetation will not be 10 feet deep and they have to be deeper than 6 inches. 

Both land form parameter distributions were defined with normal distributions.  The means are 

set equal to the original model parameter while the ranges and standard deviations allow for an 

adequate description of the possible values.  The standard deviations are set by first establishing 

a plausible range, (i.e., 2-4 for the marsh, and 8-12 for the pine flatwoods), and then equating this 

range to 6 standard deviations. 

Ridge and Slough Marsh 
(3.0) 

Mesic Pine Flatwood 
(10.0) 

2-4 Normal Distribution 
3.0 mean .33 standard dev.

8-12 Normal Distribution 
10.0 mean 0.667 stand dev 

 

4.6 Storage Coefficient 

 For most land cover conditions the storage coefficient is considered as a constant.  For 

the Ridge and Slough land use (index 511) the storage coefficient is defined with a look up table.  

The uncertainty in this parameter for the selected land forms are shown in the tables below.   

 The mucky soils associated with the ridge and slough land forms allow for fairly high 

storage factors.  The defined distribution does test the possibility of lower ranges in the storage 

coefficient.  Figure 4-4 shows this piece-wise linear CDF.  The original .2 value of the mesic 

pine flatwood is fairly consistent with other models in Florida.  A plausible range of .1-.3 is 

assumed for this variable, from which the standard deviation is estimated by equating the range 

to 6 standard deviations. 

Ridge and Slough Marsh 
(.8 with lookup) 

Mesic Pine Flatwood 
(.2) 

Value CDF 
.5 0 
.6 .25 
.7 .50 
.8 1.0  

.1-.3 Normal Distribution 

.2 mean .033 stand dev 
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4.7 Topography 

 The DISTRICT has supplied INTERA with two extreme scenarios (maps) around the 

reference topography that permit bracketing the range of topographic uncertainty and its use in 

uncertainty propagation studies.  Thus, the uncertainty in topography is characterized via 3 maps, 

a “low” topo map, a “reference” topo map, and a “high” topo map.  An indicator variable called 

“toposelect” with values 1, 2 and 3 is used to represent the 3 topo maps.  Based on the three-

point discretization strategy of Keefer and Bodily (1983), we will apply a weight of 0.185 to the 

two end-member scenarios, and a weight of 0.63 to the reference scenario.  In other words, the 

two end member scenarios will be invoked for 18.5% of the Monte Carlo simulations, and the 

reference scenario will be invoked for 63% of the Monte Carlo simulations in the uncertainty 

propagation studies.  Thus, the uncertainty in topography is represented in terms of the discrete 

indicator variable [TOPOSELECT] and the probabilities as described above.  This discrete 

distribution is shown in Figure 4-5. 

 It should be noted that although this simplistic representation of topographic uncertainty 

is adequate for demonstrating the application of NSRSM in a probabilistic framework, it results 

in the impacts of topographic uncertainty being restricted to a small spatial domain (as shown in 

Figures 2-5 and 2-6).  Also, this discrete nature of uncertainty representation is really a coarse 

characterization of the true state of uncertainty.  An alternative would be to generate multiple 

equi-probable geostatistical realizations that better characterize the spatial variability and 

correlation structure of topography in the model domain, as well as the uncertainty associated 

with this characterization.  Such a representation could capture the uncertainty of topography in a 

more continuous and realistic manner.    
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5.0 UNCERTAINTY PROPAGATION 

5.1 mCalc Software Description 

 The two uncertainty propagation methods used in the current work are Monte-Carlo 

simulation (MCS) and the First-Order Second-Moment method (FOSM) (Tung and Yen, 2005).  

Both techniques are integrated into the mCalc software, which is a powerful tool for examining 

model uncertainties. mCalc is a generic uncertainty analysis tool that ‘wraps’ around a process 

model (or a series of models).  Originally developed as a validation tool in support of the 

Department of Energy’s Yucca Mountain Project, mCalc provides a user-interface, a library of 

integrated sub-models, a sampling utility, an optimization utility, and many tools to analyze and 

visualize both field and simulated data.  It was developed in accordance with strict software QA 

procedures, with each new component tested and verified in a manner appropriate to the 

component.  The figure below shows a diagram of a typical analyst workflow and mCalc process 

flow for an MCS analysis.  The figure is explained in the following paragraph. 
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 In the left column of the figure, we see the analyst workflow.  First, the analyst defines 

the parameter distributions in mCalc.  mCalc has a wide variety of available distributions, and 

also allows the input of empirical CDFs.  Next, the analyst creates model input template files, for 

those input files that contain uncertain parameters.  A model input template file usually consists 

of the input file from the calibration run, with placeholders (that mCalc recognizes) at the 

locations of the uncertain parameter values.  The metric parsing objects are flexible I/O objects 

that allow the reading of model output data and the subsequent extraction of relevant metrics.  

mCalc has many objects available that can read and process most types of output data.  If mCalc 

does not have a suitable built-in object for reading the output data, simple scripts can be 

integrated into the execution loop for reformatting the output data.  The execution object links all 

of the file creation, model execution, and metric processing objects together, so that they run in 

the correct sequence.  Finally, the analysis and visualization objects are set up, that automate the 

creation of CDFs, horsetail plots, scatterplots and other visualization tools. 

 In the right column of the figure, we see the typical mCalc process flow.  First, mCalc 

creates all of the samples from the defined parameter distributions.  Either Latin Hypercube 

sampling, or Random (sometimes called Monte-Carlo) sampling can be used.  Intra-parameter 

correlations can be specified for Latin Hypercube sampling.  After the sampled dataset is created, 

mCalc starts the main processing loop.  First, parameters for the first realization are drawn from 

the sampled dataset.  The model input files are written based on these parameters and the model 

input template files.  The model is then executed.  Then the model output files are read and the 

relevant metrics are extracted and recorded.  At this point, the parameters for the second 

realization are drawn, and the loop continues until all of the realizations have been run.  Note 

that when mCalc is run on a cluster, this loop is the portion that is divided up and sent to the 

various nodes for parallel computation.  Finally, when all of the realizations are finished, the 

analysis/visualization objects are used to automatically create the CDFs, scatterplots, and other 

relevant figures. mCalc also includes a suite of advanced statistical analysis tools for sensitivity 

(uncertainty importance) assessments, including correlation and partial correlation analysis, 

stepwise regression, and  non-linear pattern detection.   
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 mCalc can be used through its user-friendly GUI, or in batch mode from the command 

line. In batch mode, mCalc support parallel processing Linux or Windows MPI based clusters, 

minimizing the time required to run probabilistic simulations. Both 32-bit and 64-bit versions of 

mCalc are available, for both Windows and Linux platforms.  For the current work, the mCalc 

configuration was created on Windows through the GUI and the simulations were run on a Linux 

cluster of seven nodes, each with Pentium D dual-core processors running at 3.2 GHz. 

5.2 Monte Carlo Simulation 

5.2.1 Background 

 Monte-Carlo simulation (MCS), the most commonly employed technique for 

implementing the probabilistic framework in engineering and scientific analyses, is a numerical 

method for solving problems by random sampling (Morgan and Henrion, 1990).  Probabilistic 

modeling allows a full mapping of the uncertainty in model parameters (inputs) and future 

system states (scenarios), expressed as probability distributions, into the corresponding 

uncertainty in model predictions (output), which is also expressed in terms of a probability 

distribution.  Uncertainty in model outcomes is quantified via multiple model simulations using 

parameter values and future states drawn randomly from prescribed probability distributions.   

 A Monte-Carlo analysis generally involves the following four steps: 

1 Select imprecisely known model input parameters to be sampled 

2 Construct probability distribution functions for each of these parameters 

3 Generate a sample scenario by selecting a parameter value from each distribution 

4 Calculate the model outcome for each sample scenario and aggregate results for all 

samples (equally likely parameter sets). 

 Step 1 has been previously described in Section 2.2.  Step 2 is described in Section 4.  

mCalc allowed the automation of steps 3 and 4, as described above.  mCalc was set up to run the 

NSRSM model in probabilistic mode by first creating the 11 variable objects corresponding to 

the inputs described in Section 2.2.  Each of these objects was set up as an uncertain variable 

with the appropriate distribution parameters.  The next step required creating template files for 
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the NSRSM input that would be modified during the probabilistic runs.  Template input files are 

identical to the actual NSRSM input files, except that placeholder “tags” are added in locations 

were variable values occur.  When mCalc encounters these tags in the template files, it replaces 

the tags in the created input file with the appropriate sampled values.  Finally, mCalc objects 

were created to read the NSRSM output files and extract the metrics described in Section 2.2. 

 The Latin Hypercube sampling (LHS) option (McKay et al., 1979) was selected in mCalc 

for all runs, with no specified input-input correlations.  Runs of 100, 200, and 300 realizations 

were completed, with 100 realizations taking approximately 25 hours of clock time.   

5.2.2 Monte Carlo Simulation Results 

 In selecting the 200 realization case for analysis in this work, we compared a 100, 200, 

and 300 realization cases to examine stability (i.e., sensitivity of results to sample size).  As 

examples, we will show a comparison for the [25492stage] metric.  Figure 5-1 shows the CDF 

for the [25492 stage] metric for the 100, 200, and 300 realization runs.  The horizontal grid lines 

mark the 5th, 50th, and 95th percentiles, while the vertical lines mark the metric values that 

correspond to these percentiles.  We can see from this figure that the 200 and 300 realization 

cases are smoother, and straighter through the middle section of the CDF than the 100 realization 

case.  The similarity between the 200 and 300 realization cases indicates that an adequate 

number of samples have occurred to provide stable output statistics. 

 It should be noted that the CDF shown in Figure 5-1 reflects the uncertainty in model 

outcomes from realization to realization for the one-week time averaging window shown as 

vertical lines in Figure 5-2.  In problems with time-dependent outputs, the selection of a 

representative “time slice” for presenting a CDF is often subjective.  Depending on the objective 

of the modeling exercise and/or the choice of the decision variable(s), such time slices could be 

taken to correspond to the minimum, maximum, average or some other value over the simulation 

period.  In this case, we have selected the time slice as a one-week averaging window at some 

temporal location that produces smooth derivatives so as to be consistent with the SVD analysis.     

 The remaining discussion will refer to the 200 realization case only.  Figure 5-2 shows 

the “horsetail” plot for the stage at location 25492, over the period of the representative year.  A 
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“horsetail” plot shows the uncertainty in a time-dependent outcome, typically along with several 

of the percentiles.  In Figure 5-2, the 200 realizations are represented by the grey lines, the 5th 

and 95th percentiles are blue lines, the 50th percentile (or median) is represented by the red line, 

and the base run is represented by the green line.  The base run represents the results from the 

NSRSM model provided by the DISTRICT, with variable values unchanged.  Note that the 

median value corresponds closely to the base run, but is not exactly the same.  Even if the base 

run parameter values were equal to the median values for the MCS run (which in this case, they 

were not), the median output would not necessarily result.  The 95th percentile is very close to the 

maximum of the realizations where stage is high, while the 5th percentile lies along a much larger 

spread in results for the lower stage realizations.  In general, the spread in the results appears to 

be largest in the winter months, in the middle of the period.   

 Figure 5-3 shows the horsetail plot for the stage at cell 25087.  For much of the period, 

the spread is much smaller at this stage location, although the spread increases dramatically at 

two times, peaking in June of 1992 and again in January of 1993.   

 Figure 5-4 shows the horsetail plot for the Tamiami daily transect flow.  In this figure we 

see that the maximum extremes can be significantly higher than the 95th percentile and the 

minimum extremes can be significantly lower than the 5th percentile, due to the occasional large 

fluctuation in flow with time.  When the spread is smaller, the median tracks the base case run 

very closely.   

 Figure 5-5 shows the horsetail plot for the T712_East, which has the more sharply 

pronounced peaks than the Tamiami result.  Compared to the scale of the largest peaks, the 

spread in the results does not appear very significant. 

 The horsetail plots show all of the model results for the representative year.  To analyze 

the uncertainty in the actual metrics, we will discuss figures showing the CDFs for each of the 

metrics for the 200 realization case.  As noted earlier, each CDF reflects the uncertainty in model 

outcomes from realization to realization for the one-week time averaging window shown as 

vertical lines in the horsetail plots.  Figure 5-6 shows the CDF for the [25492stage] metric.  The 

CDF is relatively symmetric, with a slightly longer tail near the lower bound.  The mean at this 

location was 1.26 ft, while the standard deviation was 0.136 ft.   
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 Similarly, Figure 5-7 shows the CDF for the [25087stage] metric.  This CDF is quite 

symmetric, but has a longer tail in the lower percentiles, and lacks the familiar “S” shape, 

showing a relatively straight trend from about the 5th percentile onward.  The mean at this 

location was 0.13 ft, and the standard deviation was 0.0465 ft.  The “error bar” on the mean stage 

for the [25087stage] metric is therefore roughly 1/3 of that for the [25492stage] metric – which is 

consistent with the general spread of the uncertainty bands shown in the horsetail plots in Figure 

5-2 and Figure 5-3.  It should be noted that this comparison is at two different times.     

 Figure 5-8 shows the CDF for the [Tamiami] metric.  This is not a typical CDF, starting 

with a large initial slope, and flattening suddenly near the 90th percentile.  The mean for this 

metric is 2.70 x 108 CFD, which is similar to the median, at 2.56 x 108 CFD, in spite of the 

general asymmetry in the CDF.  The standard deviation for this metric is 7.86 x 107 CFD. 

 Similarly, Figure 5-9 shows the CDF for the mean [T712_East] metric.  The mean for 

this metric is -8.25 x 107 CFD and the standard deviation is 1.13 x 107 CFD.  The error bar on 

mean flow at this location is only about 15% of that for the [Tamiami] metric – which is 

consistent with the general spread of the uncertainty bands shown in the horsetail plots in Figure 

5-4 and Figure 5-5.  As before, it should be noted that this comparison is at two different times. 

 As noted earlier, the horsetail plots in Figures 5-2 through Figure 5-5 depict the 

uncertainty in model outcomes over the representative year, whereas the CDFs in Figure 5-6 

through Figure 5-9 show the spread in model predictions at a particular point in time (in this 

case, a one-week averaging window).  In order to examine the sensitivity of the shape of the 

CDF to exact placement of the one-week averaging window, we select two alternative time slices 

for the [Tamiami] metric – shown as [Alt1] and [Alt2] in Figure 5-5.  The resulting CDFs are 

compared to the reference CDF in Figure 5-10.  The reference CDF (denoted as [Metric]) has 

considerable right skew, because of the presence of outliers above the 95th percentile bound as 

shown in the horsetail plot in Figure 5-4.  Conversely, the [Alt2] CDF has considerable left skew 

because of the presence of outliers below the 5th percentile bound.  The [Alt1] CDF is more 

symmetric, because the outliers are in close proximity to the 5th/95th-percentile bounds.  Thus, 

the degree of skewness seen in the CDF can be directly related to the behavior of the outliers in 

the horsetail plot.   
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5.3 First-Order Second Moment Analysis 

5.3.1 Background  

 Often, it is sufficient to quantify the uncertainty in model predictions in terms of the 

mean (describing the central tendency of the prediction) and the variance (describing the spread 

around the mean) rather than the full distribution.  The first-order second-moment method 

(FOSM) is one such methodology (Benjamin and Cornell, 1970; Dettinger and Wilson, 1981; 

Ang and Tang, 1984; Morgan and Henrion, 1990).  Compared to MCS, the FOSM technique 

entails considerably less computational effort for problems with a small number of uncertain 

parameters, while providing results of comparable accuracy for linear and mildly nonlinear 

problems (Mishra and Parker, 1989; James and Oldenberg, 1997). 

 Consider an uncertain quantity, F, which depends on the parameter vector, x.  A first-

order Taylor expansion around the mean point, $x , gives: 
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with $x  being the vector of mean values of the uncertain parameters, where the partial derivatives 

in Eq. 5-1 are also evaluated.  Taking the expected value of both sides of this expression yields: 
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where E[⋅] denotes the expectation operator.  Assuming small and symmetrically distributed 

parameter perturbations around the mean values such that the expectation term in the RHS can 

be dropped and all higher-order terms neglected, we obtain: 

)ˆ(][ xFF ≅E  (5-3) 

 Thus, the first-order estimate of the expected value (mean) of the uncertain quantity, F, is 

obtained simply by using the mean (expected value) of each of the uncertain parameters to 

evaluate the model. 

 The variance of F is defined as: 
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]])[[(][ 22 FFFV F EE −=σ=  (5-4) 

which can be calculated by substituting Eqs. 5-1 and 5-3 in Eq. 5-4 as follows: 
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where the covariance, C[xixj] = rijσ[xi]σ[xj], is expressed in terms of the parameter correlation 

coefficients, rij, and the individual parameter standard deviations, σ.  The variance of F is thus 

seen to depend on the variance-covariance relation of the input parameters, and its sensitivity to 

the uncertain inputs.  For uncorrelated parameters, the expression for variance simplifies to: 
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 The first-order estimate of the mean given in Eq. 5-3 is a reasonable approximation so 

long as parameter variances are small and the function is only mildly nonlinear - which allows 

higher-order terms to be dropped.  If these conditions are not met, then second-order terms need 

to be retained in the Taylor expansion of Eq. 5-1, leading to a correction to the mean which 

depends on the parameter covariance and mixed second partial derivatives (Benjamin and 

Cornell, 1970; Dettinger and Wilson, 1981). 

5.3.2 FOSM Results 

 The FOSM method is automated in mCalc.  However, as described in the SVD section, 

one-point derivatives did not produce accurate results.  Because of this, the derivatives were 

calculated using the multipoint method described previously in Section 3.3.  This makes the 

approach less attractive in terms of computational efficiency.  Still, we completed the 

calculations so that the results from the FOSM method could be compared to the MCS results.  

All of the same uncertain inputs were used, with the exception of TOPOSELECT.  

TOPOSELECT is a categorical input variable, so its derivatives are undefined. 

 The results of the FOSM method are compared against those obtained using MCS in 

Table 5-1.  In general, the estimates of mean and standard deviation from both methods are in 

good agreement for most of the output metrics.  The only exception is the standard deviation for 



NSRSM Sensitivity and Uncertainty Analysis  
 

   
 32 

the [Tamiami] metric, with the FOSM method estimate at less than 50% of the MCS value.  This 

is likely due to the large skewness in the output distribution (Figure 5-8).  The FOSM method 

requires a certain degree of symmetry to produce accurate results, which is one of the limitations 

of the method. 

  Table 5-1 Comparison of MCS and FOSM results. 

FOSM MCS  
Mean Stdev Mean Stdev 

25492stage 1.26 0.12 1.26 0.14 
24087stage 0.13 0.054 0.13 0.047 
Tamiami 2.55E+08 3.25E+07 2.70E+08 7.86E+07 
T712_East -8.49E+07 9.80E+06 -8.25E+07 1.13E+07 

 

 Recall that additional CDFs for the [Tamiami] metric have been presented in Figure 5-10, 

which show that the degree of skewness in the output CDF is related to the behavior of outliers at 

the time slice where the CDF is extracted.  Thus, it can be expected that a FOSM analysis 

corresponding to the [Alt1] time slice would produce better agreement with MCS results than 

that for the [Alt2] time slice.  In other words, the degree of agreement between the MCS and 

FOSM analyses depends on the degree of skewness of the output, or equivalently, the behavior 

of outliers beyond the 5th/95th percentile bounds in the horsetail plot.  
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6.0 UNCERTAINTY IMPORTANCE ANALYSIS 

6.1 Introduction 

 Classical sensitivity analysis involves quantification of the change in a model output 

corresponding to a change in one or more of the model inputs.  In the context of probabilistic 

models, however, sensitivity analysis takes on a more specific definition, namely, ranking and 

quantifying the contribution from individual input parameters to the uncertainty (the spread or 

variance) of model predictions (Helton, 1993).  This is sometimes referred to as global sensitivity 

analysis or uncertainty importance analysis to distinguish it from the classical (local) sensitivity 

analysis measures typically obtained as partial derivatives of the output with respect to inputs of 

interest (Saltelli et al., 2000). 

 The contribution to output uncertainty (i.e., variance) by an input is a function of both the 

uncertainty of the input variable and the sensitivity of the output to that particular input.  In 

general, input variables identified as important in global sensitivity analysis have both 

characteristics; they demonstrate significant variance and are characterized by large sensitivity 

coefficients.  Conversely, variables that do not show up as important per these metrics are either 

restricted to a small range in the probabilistic analysis, and/or are variables to which the model 

outcome does not have a high sensitivity.   

 For this study, the goal of sensitivity analysis is to answer questions, such as: 

• Which uncertain variables have the greatest impact on the overall uncertainty in 

probabilistic model outcomes? 

• What are the key drivers of extreme values in the output metrics? 

 The analysis of the NSRSM results uses regression-based analyses and classification tree 

analyses to answer these questions, respectively.  More explanation of these methods is 

presented in the following sections.  The analyses are carried out using results from the 

probabilistic NSRSM calculations.  The randomly sampled inputs considered in each of the 

realizations are treated as independent variables and the metrics computed from these inputs are 

treated as dependent variables.   
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6.2 Stepwise Rank Regression Analysis 

6.2.1 Background 

 The computational scheme for the regression-based sensitivity analysis consists of two 

steps (Helton, 1993): (1) fitting a linear response surface between the output and the input 

variables and (2) performing sensitivity analysis on this “surrogate” model.  Note that a 

multidimensional linear approximation for the model is a pre-requisite for this analysis.  For 

models with nonlinear input-output dependencies, rank transformation has been reported to be a 

simple and effective linearizing technique when the output is a monotonic function of the inputs 

(Iman and Conover, 1979).  Except as indicated, the theoretical discussion that follows applies 

equally to the cases of “raw” data and “rank-transformed” data.   

Stepwise Regression Basics 

 The starting point for regression-based global sensitivity analysis is a multivariate linear 

rank regression model of the form: 

 j
j
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where ŷ denotes the fitted rank-transformed output, the xj are the rank-transformed input 

variables of interest and the bj are the unknown coefficients (Helton, 1993).  The regression 

coefficients are generally fitted using a forward stepwise regression procedure (Draper and 

Smith, 1981) rather than treating all the independent variables in a single model.  In this stepwise 

approach, a sequence of regression models is constructed starting with the input variable that 

explains the largest amount of variance in the output, i.e., the variable that has the highest simple 

(Pearson product-moment) correlation coefficient, SCC, with the output.  The SCC is given by 
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 The SCC provides a measure of the degree to which the input variable of interest and the 

predicted output change together, and quantifies the strength of linear and monotonic association 

between the input-output pair.   

 At each successive step in the regression modeling process, the variable that explains the 

largest fraction of unexplained variance from the previous step is included.  This is the variable 

with the largest absolute value of the partial correlation coefficient, PCC, which measures the 

correlation between the output and the selected input variable after the linear influence of the 

other variables has been eliminated (Draper and Smith, 1981).  

 The model generated at every step is tested to ensure that each of the regression 

coefficients is significantly different from zero.  A partial F-test is used to reject the hypothesis 

that a regression coefficient is zero, at a 100(1 - α) percent confidence level, where α is 

prescribed by the analyst (Draper and Smith, 1981).  The test is implemented in two stages.  

First, a variable selected for entry via the PCC criterion is tested for its significance before it is 

admitted into the model.  Second, after the model is built at that step, each of the variables in the 

model is tested for significance.  If some variables are found to be insignificant, then the “most 

insignificant” variable is dropped and the model is built again.   

 The sequential dropping of the variables judged to be not significant and rebuilding the 

model continues until all the variables in the model become significant at the prescribed levels 

(α).  The significance levels (α) are prescribed separately for the entering and departing variables 

to avoid possible looping where the same variable can enter and depart from the model.  The 

significance level (α) for the departing variables is generally set larger than the entering 

variable’s.  Note that the need for dropping a variable generally arises only in the cases when the 

input variables are strongly correlated.  This also ensures that multicolinearity is not present in 

the final model. While multicolinearity might not a significant issue for the model predictions, it 

can have detrimental effects on the value of the fitted coefficients. 

 The stepwise regression process continues until the input-output model contains all of the 

input variables that explain statistically significant amounts of variance in the output (i.e., no 

more variables are found with a statistically significant regression coefficient).  Alternatively, 
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model overfitting can be diagnosed using a statistical metric such as PRESS (predicted error sum 

of squares) that assesses the tradeoff between the improvement in goodness-of-fit versus increase 

in the number of free parameters (Saltelli et al., 2000). 

Uncertainty Importance Measures 

 Once the regression model building is complete, several metrics can be used as measures 

of uncertainty importance.  The first of these is simply the order of entry into the regression 

model.  Another commonly used measure is the standardized regression coefficient, SRC, 

defined for variable j as: 
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where σ(xj) denotes the sample standard deviation of the uncertain input xj and σ(y) denotes the 

sample standard deviation of the output y (Helton et al., 1991).  Obviously, the original xj and y 

values are used here and not their rank-transformed values. The SRCs can be considered as 

regression coefficients that would be obtained from a regression analysis with the input and 

output variables normalized to zero mean and unit standard deviation.  For uncorrelated inputs, 

the importance ranking with SRCs is identical to that with SCCs. 

 A related measure of importance is the fractional contribution to variance, FCV.  When a 

linear additive input-output model is built with uncorrelated inputs, the goodness-of-fit of the 

model can be expressed as (Helton et al., 1991): 

 ],[22 ∑=
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where R2, the coefficient of determination, denotes the fractional variance in y explained by the 

model.  Thus, the term SCC2[y,xj] can be interpreted as the fractional variance in y explained by 

the j-th independent variable.  As can be easily ascertained, both SCC and FCV yield the same 

order of importance for the uncertain inputs that is also consistent with the SRC based 

importance ranking for uncorrelated inputs.   
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6.2.2 Stepwise Regression Results 

 Stepwise regression analyses were carried out using results from the probabilistic 

NSRSM simulations.  mCalc was used to perform the majority of the stepwise regression 

calculations.  The analysis was carried out with rank transformed data, using each metric as the 

dependent variable and the uncertain inputs as independent variables.  The regression process 

was terminated when the regression coefficients were statistically indistinguishable from zero at 

the 95 percent significance level.   

 Table 6-1 shows the results of the stepwise regression for metric [25492stage].  A total of 

five variables were admitted to the regression model, corresponding to a final R2 equal to 0.819.  

This means that roughly 82 percent of the variance in [25492stage] can be explained by the 

regression model.  The most important variable, [KVEG511], accounts for 46 percent of the 

variance explained by the input-output model.  Note that this is 46 percent of the explained 

variance, i.e. 0.379 / 0.819 * 100.  This input parameter represents the vegetation coefficient for 

the Ridge and Slough Marsh, so we can conclude that the uncertainty in the stage at location 

25492 is strongly influenced by factors controlling evapotranspiration for this vegetation type.   

 The second variable admitted to the regression model is [ALPHA511], which accounts 

for an additional 20 percent of the explained variance.  This parameter is the Manning’s 

coefficient for the Ridge and Slough Marsh, indicating that factors controlling surface water flow 

(and depth) also have some effect on the uncertainty in the stage at location 25492.  The 

[TOPOSELECT] variable accounts for an additional 13 percent of the variance in the output 

metric.  This indicates that the local topography (see Figures 2-5 and 2-6 for the area where 

topography varied among the three cases) also has a significant effect on the uncertainty in the 

stage at location 25492.  The other variables in the regression model are only of marginal 

importance, as indicated by the relatively small increases in the R2 values in Table 6-1.  Note that 

the smaller increases in R2 values correspond to small absolute values of SRC. 
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                Table 6-1 Stepwise-Regression Analysis Results for metric [25492stage]. 
Rank Variable R2 SRC 

1 KVEG511 0.379 -0.632 
2 ALPHA511 0.545 0.425 
3 TOPOSELECT 0.653 0.322 
4 DETENT511 0.750 0.315 
5 KVEG712 0.819 -0.264 

 

 Another tool for investigating the relationship between model output and key uncertain 

inputs is the use of scatter plots.  Figure 6-1 shows the scatter plots between [25492stage] and the 

first four variables added to the regression model.  The red line shown in each scatterplot is a 

LOESS (local regression smoothing) trendline.  These trendlines are useful when cluster 

densities or other factors make interpretation of trends difficult.  Note that the sign of the SRC 

should indicate the direction of the trend in the scatterplot, i.e. a negative SRC indicates a 

decreasing trend in the scatterplot, as shown with [KVEG511]. 

 Figure 6-1 shows the influence of [KVEG511], with a strong, negative, and nearly linear 

input-output relationship.  The input-output relationship between [25492stage] and [ALPHA511] 

is less pronounced, with an upward trend showing extensive scatter.  The other two variables 

show weaker positive trends.   The plot [TOPOSELECT] demonstrates the difficulty in visually 

interpreting results from categorical variables.  In this case, the smoothing trendline is especially 

helpful in showing the direction of correlation. 

 Table 6-2 shows the results of the stepwise regression for metric [25087].  A total of 

3 variables were added to the regression model, resulting in a final R2
 of 0.982.  The top-ranked 

variable, [KVEG712], dominates the regression, accounting for 97% of the explained variance.  

The other two variables are of marginal additional importance.  As expected, because location 

25087 is in the Mesic Pine Flatwood land cover type, parameters from this land cover type 

dominate the regression model.   

 The scatterplots for [25087stage] are shown in Figure 6-2.  Note the very strong negative 

trend shown in the plot for [KVEG712], with nearly horizontal (indicating little correlation) 

trends for the other two variables. 
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                Table 6-2 Stepwise-Regression Analysis Results for metric [25087stage]. 

Rank Variable R2 SRC 
1 KVEG712 0.971 -0.981 
2 ALPHA712 0.981 0.099 
3 DETENT712 0.982 0.044 

 

 Table 6-3 shows the results of the stepwise regression for metric [Tamiami].  A total of 

5 variables were added to the regression model, resulting in a final R2
 of 0.871.  As would be 

expected, because the Tamiami transect is in the Ridge and Slough Marsh land cover type, Ridge 

and Slough Marsh parameters comprise the first three variables added to the regression model.  

The marginal contribution of the remaining variables is evident in their low SRC values, of 

approximately 0.2 or less.  As with the stage metric in this land cover type, the vegetation 

coefficient is the most important variable, followed by Manning’s n.   

 Figure 6-3 shows the scatterplots corresponding to the variables in the regression.  The 

first scatterplot shows tightly clustered values around the trendline, along with a few higher 

values of [Tamiami] that do not follow the trend as closely.  These higher values are among 

those that comprise the flat section in the upper decile for the CDF of this metric (Figure 5-8).  

The scatterplot for the second variable shows a nonlinear, but monotonically decreasing trend.  

The rest of the scatterplots show weaker correlation.   

                 Table 6-3 Stepwise-Regression Analysis Results for metric [Tamiami]. 

Rank Variable R2 SRC 
1 KVEG511 0.557 -0.679 
2 ALPHA511 0.742 -0.428 
3 KVEG712 0.810 -0.259 
4 DETENT511 0.861 0.214 
5 XD511 0.871 0.103 

 

 Table 6-4 shows the results of the stepwise regression for metric [T712_East].  A total of 

4 variables were added to the regression model, with a final R2 of 0.943.  [KVEG712] comprises 

about 66% of the explained variance, followed by [ALPHA712] with an additional 28% of the 

explained variance.  The rest of the variables are of marginal importance.  Figure 6-4 is 

consistent with this result, where the [KVEG712] scatterplot shows another strong, monotonic 
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trend, and the [ALPHA712] plot also shows a significant trend.  The other variables show 

weaker correlation in their respective plots. 

                 Table 6-4 Stepwise-Regression Analysis Results for metric [T712_East]. 

Rank Variable R2 SRC 
1 KVEG712 0.620 0.800 
2 ALPHA712 0.889 0.508 
3 DETENT712 0.941 -0.228 
4 ALPHA511 0.943 0.048 

 

 These regression results indicate that the vegetation coefficient and Manning’s n are 

consistently the most important variables for explaining the uncertainty in all of the output 

metrics, with some contribution from topography for the [25492stage] metric. 

6.3 Classification Tree Analysis 

6.3.1 Background 

 Although linear regression is routinely used for analyzing the entire spectra of output 

data, specialized approaches may be required for examining small subsets (e.g., top and bottom 

deciles) of the output.  To this end, classification tree analysis can provide useful insights into 

what variable or variables are most important in determining whether outputs fall in one or the 

other (extreme) category (Breiman et al., 1984).  Traditional applications of classification trees 

have primarily been in medical decision making and data mining for social sciences.  Mishra 

et al. (2003) describe an application of the methodology to a Monte Carlo simulation-based 

model for predicting performance of a potential nuclear waste repository.  Compared to linear 

regression modeling, tree-based models are attractive because they can handle more general 

interactions between predictor variables.  In other words, the representation of interaction 

between input variables need not be restricted to simple forms such as x1*x2 or x1/x2 as is 

typically done in standard multivariate linear (or linearized) regression modeling.  Also, results 

of the tree-based modeling are insensitive to monotonic transformations (e.g., logarithmic or 

rank) of the input variables, which makes the analysis more robust.    
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 A binary decision tree is at the heart of classification tree analysis.  The decision tree is 

generated by recursively finding the variable splits that best separate the output into groups 

where a single category dominates.  The degree by which a single category dominates is called 

the split “purity”.  For each successive fork of the binary decision tree, the algorithm searches 

through the variables one by one to find the purest split within each variable.  The splits are then 

compared among all the variables to find the best split for that fork.  The process is repeated until 

all groups contain a single category, or a specified level of purity is reached for all groups.  In 

general, the variables that are chosen by the algorithm for the first several splits are most 

important, while less important variables are normally involved in the splitting near the terminal 

nodes of the tree.   

 The tree-building methodology used in the current study is based on a probability model 

approach.  Classifiers at each node are selected based on an overall maximum reduction in 

impurity, for all possible binary splits over all the input variables.  The impurity at a given node 

A is based on the Gini index (Breiman et al., 1984), which for the two class case reduces to: 

AAA ppI 212=  (6-5) 

where p1A and p2A are the estimated probabilities of classes 1 and 2, respectively, at node A.  We 

do not know the probabilities, but can estimate them from the proportion at a node, i.e.: 

A

A
A n

np 1
1 =  (6-6) 

The decrease in impurity for a given split of node A into nodes L and R (left and right) is  

RRLLA IpIpII −−=∆  (6-7) 

where pL and pR are the proportions of the cases that go to L and R, respectively. 

 The classification tree is built by successively taking the maximum reduction in purity 

over all the allowed splits of the leaves to determine the next split.  Termination occurs when the 

number of cases at a node drops below a set minimum, or when the maximum possible reduction 

in purity for splitting a particular node drops below a set minimum.  
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 For the current study, classification tree analysis was completed for the 200 realization 

case for each output metric, based on all input metrics.  The output metric was divided into 

“high” and “low” categories, where the “high” category consisted of the 50 results in the upper 

quartile (75 – 100 percentile) and the “low” category consisted of the 50 results in the lower 

quartile (0 – 25 percentile).  The statistics software, R (Venables et al., 2006), was used to create 

the classification trees based on these categories.   

6.3.2 Classification Tree Results 

 Figure 6-5 shows the classification tree for metric [25492stage].  The first split occurs on 

the most important parameter, [KVEG511].  Splitting the data at [KVEG511] = 0.8409 resulted 

in 32 values in the “low” category on the right and a mixture of “high” and “low” on the left.  

Further splits on the [ALPHA511] variable creates nearly pure final nodes, with 49 “high” on the 

left and 18 “low” on the right (along with one “high”).  So this analysis indicates that 

[KVEG511] is the most important input parameter for determining extreme results in the metric 

[25492stage], followed by [ALPHA511].   

 Another way of showing this result is via a partition plot, as shown in Figure 6-6.  A 

partition plot is simply a scatterplot of the top two variables of the tree, with different symbols 

for the two categories, “high” and “low”.  One horizontal and one vertical line correspond to the 

location of the splits for the input variables.  The main utility of a partition plot is to display the 

clustering of outcomes (if any) in the parameter space.  This helps provide a visual interpretation 

of the decision rules generated by the classification tree algorithm.  Figure 6-6 shows the 

clustering of the “high” category in the upper left quadrant based on the two splits. 

 As noted in the regression section, for many of the metrics a single variable is dominant 

in the explained variance.  As a result, we would expect the classification trees to be dominated 

by the first split, with further splits either having negligible impact or being altogether 

unnecessary.  The variable involved in the first split will correspond to the first variable added in 

the regression model discussed in the previous section.  Figure 6-7 shows the classification tree 

for metric [25087stage].  Note that the first split on [KVEG712] produces pure nodes, as might 

be expected given the strength of the association between the variable and the metric shown in 
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Figure 6-2.  Because there is only one split, the partition plot does not provide any useful 

visualization and is therefore not presented here. 

 Figure 6-8 shows the classification tree for metric [Tamiami], where a single split on 

parameter [KVEG511] creates most of the separation between the categories.  The partition plot 

in Figure 6-9 shows this effect, with most of the division between the categories occurring across 

the vertical line at [KVEG511] = 0.8169.   

 Figure 6-10 shows the classification tree for [T712_East].  As with the [Tamiami] result, 

most of the separation occurs on the first split with variable [KVEG712].  The partition plot in 

Figure 6-11 illustrates this, with most of the separation in the two classes occurring across the 

vertical line at [KVEG712] = 0.6329. 

6.4 Discussion 

 In the current work, we have applied three techniques for evaluating the sensitivity of 

output metrics to input parameters: singular value decomposition, stepwise rank regression, and 

classification tree analysis.  Singular value decomposition is a “local” sensitivity analysis, 

providing the relative influence of parameters at a single point in the parameter space.  The 

strengths of the SVD-based approach lie in potential computation efficiency and providing 

insight into parameter interactions in their influence on the output metrics.  Regressions analysis 

is a “global” sensitivity analysis, in that the full parameter space defined by the input 

distributions is analyzed. It is dependent on results from an MCS, and should provide a robust 

result. Also, categorical variables (such as [TOPOSELECT]) that are non-differentiable can 

often be included in the sensitivity analysis by using this MCS/stepwise regression combination.  

Classification tree analysis also requires the results from an MCS, but explores the extremes of 

the output metrics.  This technique can also be used with discrete parameters and provides simple 

parameter rules for determining what governs extreme results in the output metrics.  When two 

or more variables have comparable explanatory power, partition plots are often useful for 

visualizing what combinations of input values would produce different categorical outcomes 

(e.g., fit v/s misfit). 
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 In some cases, these three techniques for sensitivity analysis can provide different 

insights for analysis of a particular model.  For the current case, the results from the three 

analyses are very consistent.  .  For all techniques and all metrics, the vegetation coefficient and 

Manning’s n were determined to be the primarily influential parameters.  The reasons for such 

consistent behavior can be explained as follows.  The SVD-based sensitivity analyses essentially 

capture the relative importance of the locally linear input-output sensitivity coefficients at the 

reference point.  The stepwise regression based sensitivity analyses capture the relative 

importance of rank-transformed input-output dependencies over the sampled range.  Thus, as 

long as there are no important non-monotonic input-output relationships, and the rank 

transformation is successful in linearizing input-output behavior, the importance ranking from 

the SVD-based analysis and stepwise-regression based analysis should be consistent.   

 On one hand, it is encouraging to have consistent results from different techniques, 

because it makes a convincing case that the results are robust.  On the other hand, it does not go 

as far in demonstrating the unique insights that can be provided by each of the techniques.  We 

should consider whether the effort to apply all three techniques is justified in all cases.  As noted 

before, the dominance of a single variable in the explanation of variance for a particular metric 

creates a situation where classification tree results may add little to the stepwise regression 

results.  In the future, it may be recommended that if the results from the regression analysis 

indicate single variable domination for a metric, especially when these results are consistent with 

the SVD results, the classification tree building exercise will be unnecessary. 
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7.0 SUMMARY AND CONCLUSIONS 

 This report describes the application of a sensitivity and uncertainty analysis 

methodology for the NSRSM using the uncertainty analysis software mCalc.  The goal is to 

implement a systematic methodology that includes uncertainty characterization, uncertainty 

propagation and uncertainty importance (global sensitivity) analysis. 

 The study begins with an identification of a limited number of key uncertain inputs and 

output metrics of interest.  Five uncertain inputs (i.e., Manning’s n, detention storage, vegetation 

crop coefficient, extinction depth and storage coefficient) are selected for two land cover 

conditions, (i.e., Ridge and Slough Marsh and Mesic Pine Flatwood).  Uncertainty in these 

parameters is characterized using a limited amount of literature data, model calibration values 

from analogous regions, and expert judgment. Uncertainty in topography is represented using a 

reference topographical map, and two extreme scenarios around the reference case. 

 The output metrics selected are average water level for a one week time window at two 

model cell locations and the average flow for a one week time window at two transect locations.  

The time windows were selected within the representative water year May 1992 – April 1993. 

 An SVD-based sensitivity analysis is carried out to examine the sensitivity between the 

selected output metrics, individually and in aggregate, and the selected uncertain inputs.  The 

results provide insight into dominant parameter groups controlling model behavior in the vicinity 

of the reference point. 

 The mCalc uncertainty analysis software is employed next for uncertainty propagation 

using Monte Carlo simulation.  Stability of model results is investigated using sample size of 

100, 200, and 300 – with the 200 realization case being selected for detailed analyses.  The 

probability distributions of the selected output metrics reveal a broad spectrum of responses – 

ranging from the symmetric to the skewed.  In general, the coefficient of variation associated 

with model outcomes is less than 20%, with only a few exceptions.  It should be noted that the 

observed skewness of the output is dependent to some extent on where the CDF is extracted from 

the horsetail plot.    
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 The more computationally efficient FOSM approach is also employed to compute the 

mean and standard deviation of the output metrics.  In general, estimates of the mean and 

standard deviation agree well between the MCS and FOSM approaches, with the most deviation 

for the [Tamiami] metric which displayed a particularly skewed CDF.  An important issue is 

whether the selected output metrics can produce stable derivatives using a standard forward or 

central difference approximation, failing which the theoretical computational efficiency of the 

FOSM may not be realized.    

 Finally, uncertainty importance analysis of MCS results is carried out using stepwise 

regression analysis and classification tree analysis. Based on input-output regression modeling, 

the key variables dominating the uncertainty in output metrics are found to be vegetation 

coefficient, Manning’s n, and to a lesser extent, topographic uncertainty.  Note that this 

importance ranking could be influenced by the particular choice of a discrete representation of 

topographic uncertainty influencing a small spatial domain.  In many cases, only one variable 

contributes significantly to the overall variance of the output.   

 In classification tree analysis, the input-output relationship is reanalyzed by examining 

the factors responsible for separating the extreme outcomes (top 25% and bottom 25%).  The 

results are consistent with regression analysis, where the uncertainty in most output metrics are 

dominated by a single variable.  Both of these techniques (stepwise regression and classification 

tree analysis) produce importance rankings that reflect a combination of input-output sensitivity 

and input uncertainty.  On the other hand, the importance ranking from SVD-factorization is only 

dependent on input-output sensitivity. 

Recommendations based on this study can be summarized as follows: 

• Additional effort is required for a more comprehensive characterization of parameter 

uncertainty.  The observed dominance of a single variable vis-à-vis several output metrics 

could be an artifact of the subjectivity in assigning distributions.  An example is the discrete 

representation for topographic uncertainty, which could be better characterized with an 

ensemble of equi-probable 2-D geostatistical fields.  



NSRSM Sensitivity and Uncertainty Analysis  
 

   
 47 

• The selection of output metrics, and the time slices where the CDFs are extracted, should 

take into consideration the intended use of the probabilistic model and the associated 

decision variables.  In a time-dependent model, the horsetail plot produces a general 

indication of uncertainty in computed outcomes.  More detailed insights can be obtained 

from the analysis of CDFs at various time slices.  The choice of such time slices should be 

consistent with the decision variables of interest (e.g., maximum stage/average flow for 

representative period).  

• When using techniques that require calculation of the Jacobian, one should start with some 

exploratory runs that ensure the perturbation responses are monotonic and approximately 

linear.  Otherwise, one should consider using a multipoint derivative algorithm.  Another 

option is to carefully select an output metric so as to help improve the behavior of the 

response. 

• When using multi-point derivatives, the application of the FOSM method for predicting 

output uncertainty should be reconsidered, since the computational efficiency of the method 

suffers with such a derivative calculation strategy. 

• The results of the stepwise regression should be analyzed before completing a classification 

tree analysis.  The fit of the regression model and the scatterplots should be examined to see 

if analysis of extremes would be useful.  Otherwise, the classification tree analysis would 

basically duplicate the regression analysis. 

• Overall, this work achieved its objective of demonstrating the utility of several sensitivity 

and uncertainty analysis techniques for application to the NSRSM model.  We should be 

confident that future application of these techniques will aid any decision-making process 

that is contingent on results from the NSRSM model.  Uncertainty analysis provides 

probabilistic results that allow quantitative risk-based decision-making by management. By 

identifying the few parameters that drive uncertainty in chosen metrics, sensitivity analysis 

allows resources to be more efficiently focused to improve reliability of future estimates.  

Plans for future work on probabilistic NSRSM modeling should consider recommendations 

made in this section, specifically regarding the comprehensive characterization of input 
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uncertainty, and selection of output metrics that are clearly related to management decision 

making. 
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Figure 2-1 Structure of RSM. 
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Figure 2-2 Predevelopment land use based on historical data. 
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Figure 2-3 Land cover types chosen for parameter variation and locations of output 

metrics. 
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Figure 2-4 Modeling of ET in the RSM. 
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Figure 2-5 Difference between “high” topographic map and “base” topographic map. 
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Figure 2-6 Difference between “low” topographic map and “base” topographic map.  
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Figure 2-7 Water elevation hydrographs for locations 25087 and 25492 with averaging 
time window for sensitivity and uncertainty analysis. 
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Figure 2-8 Transect flow hydrographs for transects Tamiami and T712_East with averaging 
time window for sensitivity and uncertainty analysis. 



NSRSM Sensitivity and Uncertainty Analysis  
 

   
 59 

al
ph

a5
11

al
ph

a7
12

de
te

nt
51

1 

de
te

nt
71

2 

xd
51

1 

xd
71

2 

kv
eg

51
1 

kv
eg

71
2 

sv
51

1

sv
71

2

25492

25087

Tamiami

T712East

 
 

Figure 3-1 Bubble plot of the sensitivity matrix. 
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Figure 3-2 Singular values from the SVD decomposition. 
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Figure 3-3 U matrix elements showing linear coefficients of the output groups. 
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Figure 3-4 Elements of the VT matrix showing linear coefficients of parameter groups. 
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Figure 3-5 Resolution matrix from the SVD decomposition. 
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Figure 3-6 Correlation matrix from the SVD decomposition. 
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Figure 4-1 Cumulative distribution function (CDF) for Manning’s n. 
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Figure 4-2 Cumulative distribution function (CDF) for detention storage. 
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Figure 4-3 Cumulative distribution function (CDF) for vegetation crop coefficient. 
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Figure 4-4 Cumulative distribution function (CDF) for storage coefficient. 
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Figure 4-5 Probability density function (PDF) for topography indicator variable. 
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Figure 5-1 Stability analysis for the [25492stage] metric. 
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Figure 5-2 Horsetail plot of stage at cell 25492. 
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Figure 5-3 Horsetail plot of stage at cell 25087. 
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Figure 5-4 Horsetail plot of daily transect flow for Tamiami. 
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Figure 5-5 Horsetail plot of daily transect flow for T712_East. 
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Figure 5-6 CDF for the [25492stage] metric, for the 200 realization case. 
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Figure 5-7 CDF for the [25087stage] metric, for the 200 realization case. 
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Figure 5-8 CDF for the [Tamiami] metric, for the 200 realization case. 
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Figure 5-9 CDF for the [T712_East] metric, for the 200 realization case. 
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Figure 5-10 CDFs for the [Tamiami] metric, and two alternate metrics, for the 200 

realization case.  Figure 5-4 shows the time slices for the three metrics. 
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Figure 6-1 Input-output scatterplots for important variables with respect to 
[25492stage]. 
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Figure 6-2 Input-output scatterplots for important variables with respect to 

[25087stage]. 
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Figure 6-3 Input-output scatterplots for important variables with respect to [Tamiami]. 
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Figure 6-4 Input-output scatterplots for important variables with respect to 

[T712_East]. 
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Figure 6-5 Classification tree for metric [25492stage]. 
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Figure 6-6  Partition plot for metric [25492stage] 
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Figure 6-7 Classification tree for metric [25087stage]. 
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Figure 6-8 Classification tree for metric [Tamiami]. 
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Figure 6-9 Partition plot for metric [Tamiami] 
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Figure 6-10 Classification tree for metric [T712_East]. 
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Figure 6-11 Partition plot for metric [T712_East]. 

 


